Metal Carbene Complexes

Carbene

Alkylidene

Electrophilic

 usually possess heteroatom (electronegative) substituents

Nucleophilic

usually possess alkyl or hydrogen substituents

L_nM=CR₂ Chemistry

2005 Nobel Prize: Chauvin, Grubbs, Schrock

Catalytic Olefin Metathesis:

$L_n M = CR_2 vs. L_n M = SiR_2$

	L _n M=CR ₂	L _n M=SiR ₂
First Prepared	1964 (Fischer) 1974 (Schrock)	1990 (Tilley)
Known Compounds	thousands	hundreds
Reactivity	Nucleophilic and electrophilic	Electrophilic Only
Synthetic Utility	-Olefin metathesis -Organic synthesis -Metal carbyne precursors	-Proposed in numerous catalytic processes -Largely unexplored

• Main Group – Pronounced differences in chemistry within the same group

Waterman, R.; Hayes, P. G.; Tilley, T. D. Acc. Chem. Res. 2007, 40, 712.

No known complexes with silylidene character
χ(C) = 2.55, χ(Si) = 1.90 – free silylenes have singlet character

Synthetic Strategies for M=Si Compounds

Anionic Substituent Abstraction

α-Hydrogen Migration

Waterman, R.; Hayes, P. G.; Tilley, T. D. Acc. Chem. Res. 2007, 40, 712.

Synthetic Strategies for L_nM=SiR₂ Compounds

Double Si-H Activation (Silylene Extrusion)

Waterman, R.; Hayes, P. G.; Tilley, T. D. Acc. Chem. Res. 2007, 40, 712.

Cp*(ⁱPr₃P)OsCH₂Ph

*t*_{1/2} ~ 1 hour at RT

Reactions with Secondary Silanes

H-Substituted Silylene Compounds

²⁹Si NMR: δ -21

NMR	$R = 2,4,6^{-i}Pr_3C_6H_2$ (trip)	$R = 2,6-Mes_2C_6H_3 \text{ (dmp)}$	$R = 2,4,6-(CF_3)_3-C_6H_2$ (Mes ^F)
¹ Η (δ)	12.1 (SiH)	11.6 (SiH)	11.2 (SiH)
	-16.0 (OsH)	-16.9 (OsH)	-16.5 (OsH)
²⁹ Si (δ)	229	217	N/A
¹ <i>J</i> _{Si-H} (Hz)	144	149	N/A
² J _{Si-H} (Hz)	6.6	7.7	N/A

Solid State Structure of Cp*(ⁱPr₃P)(H)Os=SiH(trip)

Crystals g

Sum of an

Bond Lengths (Å)			
Os-Si	2.219(1)		
Os-P	2.293(1)		
Os-Cp*	2.218(5) –		
	2.351(5)		
Os-H(1)	1.87(1)		
Si-H(2)	1.48(1)		

Bright yellow crystals	Bond/Dihedral Angles (°)		
	Os-Si-C	129.7(2)	
	P-Os-Si	90.9(1)	
rown from cold pentane	Os-Si-H(2)	131.5(2)	
gles at Si = 359.8°	C-Si-H(2)	98.6(2)	
	H(1)-Os-Si-H(2)	53.2(2)	
	P-Os-Si-C	19.7(2)	

Hayes, P. G.; Beddie, C.; Hall, M. B.; Waterman, R.; Tilley, T. D. J. Am. Chem. Soc. 2006, 128, 428.

Calculated LUMOs for Silylene Complexes

- LUMO is primarily a Si p-orbital
- Coordination of olefin to Si involves interaction of Os=Si LUMO with the olefin HOMO
- LUMO of charged species is much closer in energy to HOMO of olefin (-0.267eV)

Hayes, P. G.; Beddie, C.; Hall, M. B.; Waterman, R.; Tilley, T. D. J. Am. Chem. Soc. 2006, 128, 428.

Summary of Small Molecule Reactivity

Metal Carbyne Complexes

Alkyne Metathesis:

$L_n M \equiv CR vs. L_n M \equiv SiR$

	L _n M≡CR	L _n M≡SiR
First Prepared	1973 (Fischer)	2003 (Tilley)
Known Compounds	>1000	<100
Reactivity	Nucleophilic and electrophilic	?
Synthetic Utility	-Alkyne metathesis -Alkyne polymerizatior -Carbide precursors	? 1
Me ₂ Piiii P	H = CI + CI	
Me ₂ Piuri Mor	-Alkyne polymerization -Carbide precursors -Carbide precursors Me_2	

Osmium Silylyne Complex

Cation-Anion Interaction?

Spectroscopic parameters for free $RB(C_6F_5)_3^-$:

- ¹¹B NMR: δ -20 to -25
- ¹⁹F NMR: Δ_{m,p}δ < 3</p>
- Coordinated Anion $\Delta_{m,p}\delta$ 3-6

Horton, A. D. Organometallics **1996**, *15*, 2675.

 $[Cp^{*(i}Pr_{3}P)(H)Os \equiv Si(trip)][HB(C_{6}F_{5})_{3}]:$

 ¹¹B NMR: δ -25
¹⁹F NMR: δ -131.2, -162.9, -165.5 Δ_{m,p}δ 2.6

 \square Noncoordinated HB(C₆F₅)₃⁻

Hayes, P. G.; Beddie, C.; Hall, M. B.; Waterman, R.; Tilley, T. D. J. Am. Chem. Soc. 2013, 135, 11780.

Reactivity of an Osmium Silylyne

Hayes, P. G.; Beddie, C.; Hall, M. B.; Waterman, R.; Tilley, T. D. J. Am. Chem. Soc. 2013, 135, 11780.

Mechanism of C-H Activation

Path A: Oxidative Addition at Os

- No H incorporation at Os or B
- No Os-D/Si-H or Si-H/B-D exchange observed after 6 hours at RT

Exploring Routes to Neutral Ruthenium Silylene Complexes

■ ¹H NMR: δ -11.9 (Ru-H)

Stable Neutral Ruthenium Silylene Complexes 0.5 Mg(CH₂Ph)₂(THF)₂ Ru Ru toluene ⁱPr₂MeP ⁱPr₂MeP -0.5 MgCl₂ Purple crystals Rι 借 Ρ - toluene **RR'SiH**₂ ³¹P NMR: δ 47.4 ■ *t*_{1/2} ~ 24 h $(25 °C, C_6D_6)$ No Reaction ⁱPr₂MeP``[`] Red crystals (47%) 80 °C, 3 days ∠R C_6D_6 R' **NMR** R,R' = H, trip $R,R' = H, Mes^{F}$ R,R' = CI, tripR,R' = H, dmpR,R' = Ph, trip9.4 ¹H (δ) Si-H N/A (br) N/A 8.0 N/A Ru-H -13.5 -13.3 (br) -16.0 -14.4 -12.6 ²⁹Si (δ) N/A 222 204, ${}^{2}J_{\text{Si-H}} = 8.6$ 229 N/A ³¹**Ρ (**δ**)** 53.6 56.9 48.5 55.7 55.5 Hayes, P. G.; Waterman, R.; Glaser, P.B.; Tilley, T. D. Organometallics 2009, 28, 5082.

Ruthenium Silylene X-ray Crystal Structures

Bond Lengths and Angles (Å and °)					
	R,R' = H, trip $R,R' = H$, Mes ^F $R,R' = CI$, trip				
Ru–Si	2.205(2)	2.181(1)	2.183(4)		
Ru–P	2.272(1)	2.285(1)	2.286(4)		
Ru–Cp*	2.226(4) – 2.264(6)	2.223(4) – 2.257(4)	2.223(2) – 2.282(2)		
Σ angles at Si	359.4	359.9	357.7		

Hayes, P. G.; Waterman, R.; Glaser, P.B.; Tilley, T. D. Organometallics 2009, 28, 5082.

Osmium Germylene Complexes

NMR	R = ^{<i>t</i>} Bu	R = Ph	R = trip
¹ Η (δ)	14.0 (GeH)	14.3 (GeH)	15.0 (GeH)
	-15.7 (OsH)	-15.6 (OsH)	-15.7 (OsH)
³¹ Ρ (δ)	45.9	43.0	37.5

First hydrogen-substituted germylene complexes

Ruthenium Germylene Complexes

Bond Lengths (Å)		Bond/Torsion Angles (°)	
Ru–Ge	2.282(2)	Ru–Ge–C	129.33(2)
Ru–Cp*	2.209(7) - 2.255(6)	H–Ru–Ge–H	50.4(2)
Ru–P	2.272(2)	P-Ru-Ge-C	161.3(3)

Metal Germylyne Complexes

Filippou, Philippopoulos, Portius and Neumann *Angew. Chem. Int. Ed.* **2000**, *39*, 2778; *Organometallics* **2002**, *21*, 653.

Simmons, Pu, Twamley, Haubrich, Olmstead, Mork and Power *J. Am. Chem Soc.* **1996**, *118*, 11966; **2000**, *122*, 650.

All known routes utilize E(II) precursors

Ruthenium Germylyne Complex

Osmium Stannylene/Stannylyne Complexes

Hayes, P. G.; Gribble, C. W.; Waterman, R.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 4606.

Hayes, P. G.; Gribble, C. W.; Waterman, R.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 4606.